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Fundamental Theorem for plane curves

THEOREM

Prescribe ¥ = x(s) (continuous):
0(s) = [x(s)ds, x(s)= [cosbO(s)ds, y(s)= [sinf(s)ds
= (x(s), y(s)) unique up to rigid motions




Fundamental Theorem for plane curves

THEOREM

Prescribe ¥ = x(s) (continuous):
0(s) = [x(s)ds, x(s)= [cosbO(s)ds, y(s)= [sinf(s)ds
= (x(s), y(s)) unique up to rigid motions

Example (Catenary)
K(S) = 1+ —— = 0(s) = arctans

Iog s+\/52+ =+V1+s2 < y=coshx, x€R

ey




[D. Singer: Curves whose curvature depends on distance from the origin.
Amer. Math. Monthly 106 (1999), 835-841.]
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Singer’'s Problem

[D. Singer: Curves whose curvature depends on distance from the origin.
Amer. Math. Monthly 106 (1999), 835-841.]

Can a plane curve be determined if
its curvature is given in terms of its position?

X (8)y" (1) =y (D (1)
(< (22 +y'(£)2)"2

= x(x(t), ¥ (1))

x =x(x,y),
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Singer’'s Problem

[D. Singer: Curves whose curvature depends on distance from the origin.
Amer. Math. Monthly 106 (1999), 835-841.]

Can a plane curve be determined if
its curvature is given in terms of its position?

x =x(x,y),

k(x,y)=vVx2+y2 e x(r)=r J

Bernoulli lemniscate: r2 = 3sin 20
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Euler's elastic curves

Elastica under tension o € R:
Critical points of [(k?+c)ds: 2& +x3 — 0ok =0

x(y) = 2Ay, )L>0J

[x(y)dy = Ay? + ¢
Tension 0 = —4Ac
Maximum curvature kg = 2VAVI—c c<1

o c < —1, orbitlike:

e c > —1, wavelike: e c = —1, borderline;
K
K(s) = ko on ($5.p).  k(s) = ko sech 52, K(s) =ko dn (152,p),
p?=15¢ seR seR p?=1%,s€R
N \\ Iﬂ
| T i ‘I \
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P.A. Djondjorov, M.T. Hadzhilazova, P.l. Marinov, |.M. Mladenov,
V.M. Vassilev, ...

[I. C., I. Castro-Infantes and J. Castro-Infantes: New plane curves with

curvature depending on distance from the origin. Mediterr. J. Math. 14
(2017), 108:1-19.]
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Theorem « = «(r)

Prescribe © = x(r) such that rx(r) continuous.
The problem of determining a curve y(s) = r(s) ") -s arc length-
with curvature «k(r) is solvable by three quadratures:

@ [rx(r)dr = K(r), geometric angular momentum.

Q s=s(r /\/—

o 9(5):/%ds.

» 1 is uniquely determined, up to rotations, by K(r).

——» r=r(s) --» x = «x(s).




Curves with curvature depending on distance from a point

Theorem x = «(r)

Prescribe ¥ = x(r) such that rx(r) continuous.
The problem of determining a curve y(s) = r(s) e?(s) _s arc length-
with curvature x(r) is solvable by three quadratures:

@ [rx(r)dr = K(r), geometric angular momentum.

= =

@ o(s)= [ ’Cr((’s ()52))ds

» 7 is uniquely determined, up to rotations, by K(r).

Q s=s(r =3 r=r(s) -+ k = x(s).




Curves with curvature depending on distance from a point

Theorem x = «(r)

Prescribe « = x(r) such that r«x(r) continuous.
The problem of determining a curve y(s) = r(s) e"(*) -s arc length-
with curvature x(r) is solvable by three quadratures:

@ [rx(r)dr = K(r), geometric angular momentum.

= =

@ o(s)= [ ’Cr((’s ()52))ds

» 7 is uniquely determined, up to rotations, by K(r).

Q s=s(r =3 r=r(s) -+ k = x(s).

Example (Circles)
k=kyo >0, K(r)=kor?/2+c

rdr (c=0) :
s:fm =" (2/ko) arcsin(kor/2)

r(s) = (2/ko) sin(kgs/2), 6(s) = kos/2
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Plane curves such that [x(r)

K(r) =r—20° (—c=20>0)




Plane curves such that [k(r)=1/r

K(r) = r—20% (—c = 2% > 0)

r(t) = p?(t? +1), 6(t) = t — 2arctan t (ds = r dt)



Plane curves such that [k(r)=1/r

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011]
[Marinov, Hadzhilazova and Mladenov, 2014]

K(r) =r—20° (—c=20>0)

r(t) = p?(t> +1), 6(t) = t — 2arctan t (ds = rdt)

Sturm or Norwich spiral
~




Plane curves such that [«(r) = Ar"™ 1 (A > 0,n#—1,0)

K(r) = At

n+1



Plane curves such that [«(r) = Ar"™ 1 (A > 0,n#—1,0)

K(r) = At

n+1



Plane curves such that

Al
IC(I’) T n+1r
A n—1
dg = L’ dr

k(r)=Ar"t (A >0,n#—

0)

Sinusoidal spirals r" = X sin (nb)
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Plane curves such that

k(r)=Ar"t (A >0,n#—

0)

_ A+l
IC(I’) T n+1r
A ,n—1
do = L’ dr

2
A
1- (n+1) r2n

Sinusoidal spirals r" =

e n = 2: Bernoulli lemniscate r? = %sin 20

e n=1/2: Cardioid r = 4%sin2

NI

X sin (nb)




Plane curves such that

k(r)=Ar"t (A >0n#-1,0)

_ A+l
IC(I’) T n+1r
A rnfl
df = ——=ntt dr

2
A
1- (n+1) r2n

Sinusoidal spirals r" = X sin (n)

e n = 2: Bernoulli lemniscate r? = %sin 20 encQ:

e

e n=1/2: Cardioid r = -25 sin?

Algebraic curves

n=1/3,1/4,1/6
n=2/3,2/572/7
n=4/3,5/4,6/5

DS
HB

NI




Uniqueness results for plane curves

The Bernoulli lemniscate r2 = 3sin 20
is the only plane curve (up to rotations)
with geometric angular momentum KC(r) = r3/3

(and curvature | x(r) = r|).

The cardioid r = %(1 + cos @)
is the only plane curve (up to rotations)
with geometric angular momentum K (r)=ry/r

(and curvature | x(r) =52~ ).

NG

The Norwich spiral is the only (non circular)
plane curve (up to rotations) with curvature

k(r)y=1/r]




Plane curves such that

K(r)=ur®*—=A/r

x(r)=

A +3ur (A €R,p > 0)
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Plane curves such that

K(r)=ur®*—=A/r

o 1+4Au>0:
Ela,b;éO/‘u:ﬁ,/\:

K(r)=4+3ur (A € R, u > 0)

at—p*

2b2




Plane curves such that |k(r)=4 + 3ur (A € R, u > 0)

K(r)=ur®*—=A/r

urt — A

r/rt = (ur* — )2

do = dr
o1 +4Au>0:

Ela,b;«éO/‘u:ﬁ,/\:a

4_b4
2b?

Cassini ovals r*—2a%r2 cos 20+ a* = b*

ac{1,23},be {1,234}



Plane curves such that

k(r)=2A+u/r(A=1,u#0)

K(ry=r’+ur,u<1




Plane curves such that |x(r) =2A +u/r (A =1,u # 0)

K(r)=r*+ur,u<1

2coss —
r(s)=coss—pu, 0(s)=s+u /[ Cosdssfy k(s) = SCSSTH

coss —



Plane curves such that |x(r) =2A +u/r (A =1,u # 0)

K(ry=r’+ur,u<1

__2coss—u

r(s)=coss—pu, 0(s)=s+u /[ Cosdssfy x(s)
epuc(—11):p=cosy, 0<y<m
(sy =sin7y, ¢y = cos7, ty =tany)

coss —



Plane curves such that |x(r) =2A +u/r (A =1,u # 0)

K(r)=r*+ur,u<1
ds 2coss — U
r(s)=coss—p, 0(s) =s+p [ o= *(s)=————+

epuc(—L1):pu=cosy, 0<y<m
(sy =sin7y, ¢y = cos7, ty =tany)

coss — i

ry(s) = coss —cy, 0,(s) =s+ % arctanh (1?—% tan %)




Plane curves such that

k(r)=2A+u/r(A=1,u#0)

K(r)=r*+ur,u<1

r(s) = coss —u, 0(s) =s—|—]1f

o u=—1:

ds
coss—p

Inverse Norwich spiral
r(s) =coss+1, 6(s) =s—tan3

LN
N/

-
-




Plane curves such that |x(r) =2A +u/r (A =1,u # 0)

K(ry=r’+ur,u<1

r(s) = Ccoss — U, 9(5) = 5+Vf cosdssfpl K(S) - m

o< —lipu=—coshd, 6 >0
(ss = sinhé, ¢g = coshd, t; = tanh )

r5(s) = coss + ¢, 05(s) = s — t%_arctan (1-7—’5% tan %)
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K(r) = AW T

k(r) =A/vVr2+1(0<A<1)




Plane curves such that [x(r) = A/Vr?+1(0< A < 1)

K(r) = AW T

A=sinB, B e (0,7/2) (sp =sinB, cg = cosf, tg =tanp)



Plane curves such that

k(r) =A/vVr2+1(0<A<1)

K(r) = AW T

A=sinB, Be(0,/2) (s

= sin B, cg = cos B, tg = tan )

2
rﬁ(t)z — o z(cﬁt) — 1, 6(t) = sgt +arctan (M)

B

tg

(ds=/r? + 1dt, s:sinh(cﬁt)/cg)

p




Plane curves such that [x(r) = A/Vr?+1(0< A < 1)

K(r)=AVri+1
A=sinB, B e (0,7/2) (sp =sinB, cg = cosf, tg =tanp)

2
rp(6)2 = P 1, 0p(r) = spt + arctan (25 2Y)

< p
(ds= r§+1dt, s:sinh(cﬁt)/cg)
_ sinBcosp
%8(s) = e B € (0.7/2)




Plane curves such that

K(r) = AW 1

k(r)=A/vVr?—1(A>0)

e 0< A<l : A=sina,a € (0,71/2)
(sx =sina, ¢y = cosa, t;, =tana)

K(r)=sinavr?—1




Plane curves such that [x(r) = A/ r?—1 (A > 0)

K(r) = AW 1

e 0< A<l : A=sina,a € (0,71/2)
(sx =sina, ¢y = cosa, t;, =tana)

K(r)=sinavr?—1

.2
r(t)? = sinh™(cut) 4 . 0, (t) = syt — arctan(t, tanh(cyt))

@

(ds=+/r2 —1dt, s=cosh(c,t)/c?)



Plane curves such that [x(r) = A/ r?—1 (A > 0)

K(r) = AW 1

e 0< A<l : A=sina,a € (0,71/2)
(sx =sina, ¢y = cosa, t;, =tana)

K(r)=sinavr?—1

r(t)? = M +1, 6,(t) = syt — arctan(t, tanh(cyt))

=/r2 —1dt, s=cosh(c,t)/c?)

— sina cosa

K,X(S) " Veostus2—1

S



Plane curves such that [x(r) = A/ r?—1 (A > 0)

K(r) = AW 1




Plane curves such that

K(r) = AW 1

k(r)=A/vVr?—1(A>0)

Anti-clothoid

r(s) = v/1+2s, 0(s) = /25 — arctan/2s




Plane curves such that

K(r) = AW 1

k(r)=A/vVr?—1(A>0)

Anti-clothoid

r(s) = v/1+2s, 0(s) = /25 — arctan/2s

k(s)= -+, s>0

V2s




Plane curves such that

K(r) = AW 1

k(r)=A/vVr?—1(A>0)

eA>1:A=cosht,T>0
Sr =sinh T, ¢f = cosh T, t; = tanh 7)

(
K(r) =coshtv/r2 —1




Plane curves such that

x(r)

=A/Vr2—1(A>0)

K(r) = AW 1

eA>1:A=cosht,T>0

(st =sinh T, ¢ = cosh T, tr = tanh T)
(

r) = coshtv/r2 — 1

tr

rT(t)2 = sin (s 941, 0, (t) = c¢t —arctan (tan(sTt))

\/r2 1dt, s=—cos(sct)/s?)




Plane curves such that [x(r) = A/ r?—1 (A > 0)

K(r) = AP =1

eA>1:A=cosht,T>0

(st =sinh T, ¢ = cosh T, tr = tanh T)
K(r) =coshtvr?2 —1
rT(t)2 = ( 41,6, (t) = cct — arctan (@)
:\/r2 1dt, s=—cos(sct)/s?)
KT(S) _ _sinhtcosht

v/ 1—sinh* r 52
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Spherical version of Singer's Problem

Can a spherical curve be determined
if its (geodesic) curvature is given in terms of its position?

x(s) y(s) z(s)
x(s) y(s) z(s) | =x(x(s),y(s) z(s))
x(s) y(s) Z(s)
x(5)2+y(s)2+2(s)?> =1, x(s)2+y(s)>+2(s)?> =1




Spherical version of Singer's Problem

Can a spherical curve be determined
if its (geodesic) curvature is given in terms of its position?

x(s) y(s) z(s)
x(s) y(s) z(s) | =x(x(s),y(s) z(s))
x(s) y(s) Z(s)
x(s)2 +y(s)2+2z(s)?> =1, x(s)®> +y(s)® +2(s)> =1

[I. Castro, |. Castro-Infantes and J. Castro-Infantes. Spherical curves
whose curvature depends on distance to a great circle. Preprint.]
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Spherical curves whose curvature depends
on distance to a geodesic (or from a point)



Spherical curves whose curvature depends
on distance to a geodesic (or from a point)

Theorem

Prescribe k = x(z) continuous.

The problem of determining a spherical curve

&(s) = (x(s),y(s), z(s)) -s arc parameter- whose curvature is k(z),
(z representing the signed distance to the great circle z=0),

is solvable by 3 quadratures:




Spherical curves whose curvature depends
on distance to a geodesic (or from a point)

Theorem

Prescribe k = x(z) continuous.

The problem of determining a spherical curve
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@ [«x(z)dz = K(z), spherical angular momentum




Spherical curves whose curvature depends
on distance to a geodesic (or from a point)

Theorem

Prescribe k = x(z) continuous.

The problem of determining a spherical curve

&(s) = (x(s),y(s),z(s)) -s arc parameter- whose curvature is k(z),
(z representing the signed distance to the great circle z=0),

is solvable by 3 quadratures:

@ [«x(z)dz = K(z), spherical angular momentum

Q s:s(z):/ 1—zdz -+ z=12(s) --» k = k(s)




Spherical curves whose curvature depends
on distance to a geodesic (or from a point)

Theorem

Prescribe k = x(z) continuous.

The problem of determining a spherical curve

&(s) = (x(s),y(s), z(s)) -s arc parameter- whose curvature is k(z),
(z representing the signed distance to the great circle z=0),

is solvable by 3 quadratures:

Q@ [x(z)dz=K(z), spherica/ angular momentum
Q@ s=s(z / -+ z=2(5) --» k =x(s
e (5) (5)

Q x(s) = cosg(s) cosA(s), y(s) = cosg(s)
¢(s) = arcsinz(s), A(s) = fz (s)) 1 ds

sinA(s),

?iﬁ




Spherical curves whose curvature depends
on distance to a geodesic (or from a point)

Theorem

Prescribe k = x(z) continuous.

The problem of determining a spherical curve

&(s) = (x(s),y(s), z(s)) -s arc parameter- whose curvature is k(z),
(z representing the signed distance to the great circle z=0),

is solvable by 3 quadratures:

Q@ [x(z)dz=K(z), spherica/ angular momentum

Q s=s(z / =7 K02 =3 z=2(s) --» k = k(s)

Q x(s) =cos@(s)cosA(s), y(s) =cos(s)sinA(s),

@(s) = arcsinz(s), A(s) = [ (()( s)) s

» C is uniquely determined (up to rotations around the z-axis) by K(z)




Examples

Example (Great circles)
k=0 [x(z)dz=rc,
s:f\/% :arcsinﬁ, le| <1,
z(s) = V1 —c?sins,
A(s) = —arctan(ctans),
&(s) = (coss, —csins, V1 — c?sins),
SN{Vi-c2y+cz=0},K=c




Examples

Example (Great circles)
k=0 [x(z)dz=rc,
5= f\/% :arcsinﬁ, le| <1,
z(s) = V1 —c?sins,
A(s) = —arctan(ctans),
&(s) = (coss, —csins, V1 — c?sins),
SN{Vi-c2y+cz=0},K=c

Example (Small circles)
k=ko>0: [x(z)dz=khkoz+c
z(s)=

1 (] 2 gl 112
?kg( 1—c2+k§ sin(y/1+kg s)—ckg),
le| < y/1+ k3.

_ 0 Q2 _ _ ko _
c=0:5 ﬂ{y—m},K(z)—koz
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Spherical elasticae: characterization and generalization

Elasticae under tension ¢ € R:
critical points of F, (&) := fC(K2 +0)ds (0 = 0 free elasticae)

A-elasticae: critical points of FA(&) := fg(K +A)2ds, A € R

Theorem

(i) ¢ spherical curve, |k(z) =2az+ bl a#0, b€ R
([x(z)dz = K(z) = az? + bz + c)
= ¢ critical points of fg(K2 — 2bk + b% — 4ac)ds

o b=0 (K(z) = az’ + c): € elastica under tension ¢ = —4ac
o ¢ =0 (K(z) = az’ + bz): & A-elastica, A = —b

(il) Conversely, ¢ critical point of
FME) = [((k+1)>+0)ds, Ao €R

=3Jda#0,beR:x(z) =2az+b
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Spherical borderline elastic curves.

ea>1/2,b=0,c=1:

k(z) = 2az|,

a>0, IC(Z):322+1

@(s) = arcsin (@ sech(1/2a — ls)) , seR
x(s) = 2v/2a — 1sech(y/2a — 1s)
A(s) = —a [tan? g(s)ds + [ sec? ¢(s)ds

a=1:A(s)=s;
atl: A(s):s+arctan(

Vv2a—1
1-a

tanhﬁ/ﬁs))



Spherical borderline elastic curves.

©ea>1/2,b=0,¢c=1:

k(z) = 2az

,a>0, K(z) =az’>+1

@(s) = arcsin (@ sech(v/2a — 15)) , seR
x(s) = 2v/2a — 1sech(y/2a — 1s)
A(s) = —a [tan? g(s)ds + [ sec? ¢(s)ds

a£l:A(s) :s+arctan(

a=1:A(s)=s;
Vlzfgl tanh(y/2a — 15))
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r=sn(s, k), 6 = ks, z=cn(s, k), (k>0)

eb=0,a+c=0:

k(z) = 2az

,a>0, K(z2)

282273
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r=sn(s, k), 6 = ks, z=cn(s, k), (k>0)

eb=0,a+c=0:|x(z) =2az| a>0, K(z) =az> —a
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Seiffert’s spherical elastic spirals

r=sn(s, k), 6 = ks, z=cn(s, k), (k>0)

eb=0,a+c=0:|x(z) =2az| a>0, K(z) =az> —a

z(s) =cn(s,a),a>0
acn(s,a), a>0

ks
—
)
[
I
N

s, r(s) =sn(s,a), a>0



Seiffert’s spherical elastic spirals

r=sn(s, k), 0 = ks, z=cn(s, k), (k> 0) [Erdos, 2000]

eb=0,a+c=0:|x(z) =2az| a>0, K(z) =az> —a




New spherical curves I:

k(z) = ﬁ , O<a=sina<l (0<a<7m/2)

K(z) = —V/sina — 22
arcsin(cosa s)
k(s) = =2, |s] < tana

)
\/s2—c2s2

-
N
Il

2
CySTS,
A(s) = L arctan % -
« cx\/ 82 —c2s?




New spherical curves Il:

_ az
K(Z) = ﬁ , a=cosh?6>1, (6>0)

K(z) = —V/1— cosh? 622

(P(S) — arcsin(esinhés)
K(s) = cosh? § esinhds e loxcoshs/ sinhs
B \/1*C05h2§e2sinh55’ g
)L(S) =

sinh o

: \/1—cosh? § e2sinhés
_ﬁ arctanh (\/1 _ Cosh25e2smhz§s) + arctan ( 1—cosh?de >




New spherical curves IlI:

1-22° 2
K(z2) =Lt =22 =x(g)| o<p <

K(z) =pzv1—2z2= §sin2¢ = K(¢)
¢(s) = am(s, p)
x(s) = p(2cn(s, p) — 1/ cn(s, p))

d , /
A(s) = =55 log (ﬁ%i,’jﬁﬁ) pl=+1-p?
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with spherical angular momentum
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Uniqueness results on classical spherical curves

Loxodromes

The loxodromes, dA = cotacgs(’)go, a € (0,7/2),

are the only spherical curves
(up to rotations around z-axis)
with spherical angular momentum

K(¢) = — cosa cos ¢

(and curvature | k(@) = cosatan ¢ |).

x(s) = cosa tan(sinas), « € (0,77/2)

The spherical catenaries, sin gocos2 @ % = 3,
a < 1/2, are the only spherical curves

(up to rotations around z-axis)

with spherical angular momentum

K(p) =—a/sing

(and curvature [ x(z) = a/ sin? ¢

~

- 22
K(s) = 1+v1—-4a2sin2s
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Viviani's curve

Viviani's curve, A = @, is the only spherical curve

(up to rotations around z-axis)

= ) with spherical angular momentum K(z) =

z2-1
2—z2

(and curvature | x(z) = (

2—72)3/2

).
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Viviani's curve, A = @, is the only spherical curve

(up to rotations around z-axis)

= ) with spherical angular momentum K(z) =

z2-1
2—z2

(and curvature | x(z) = z(3-2%)

).
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Uniqueness results on classical spherical curves

Viviani's curve

Viviani's curve, A = @, is the only spherical curve
(up to rotations around z-axis)

. . 2_
=S ) with spherical angular momentum K(z) = Z2 12
| - —Zz

(and curvature | k(z) = % ).

Archimedean spherical spirals

Archimedean spherical spirals, ¢ = nA, n > 0,
are the only spherical curves
(up to rotations around z-axis)
with spherical angular momentum

— 221
K2) = fmm

_ z(2n?+1-2?%)
K(z) = (n211-22)3/2

(and curvature

~
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