On a problem of David A. Singer about prescribing curvature for curves

Ildefonso Castro (Ildefonso Castro-Infantes and Jesús Castro-Infantes)

Partially supported by Geometric Analysis Project (MTM2017-89677-P)

Index

- Motivation
- 2 Plane curves with curvature depending on distance to a line
- 3 Plane curves with curvature depending on distance from a point
 - New plane curves
 - Uniqueness results
- Spherical curves with curvature depending on their position
 - New spherical curves
 - Uniqueness results

Index

- Motivation
- Plane curves with curvature depending on distance to a line
- Plane curves with curvature depending on distance from a point
 - New plane curves
 - Uniqueness results
- Spherical curves with curvature depending on their position
 - New spherical curves
 - Uniqueness results

Fundamental Theorem for plane curves

THEOREM

```
Prescribe \kappa = \kappa(s) (continuous): \theta(s) = \int \kappa(s) \, ds, \chi(s) = \int \cos \theta(s) \, ds, \chi(s) = \int \sin \theta(s) \, ds \Rightarrow (\chi(s), \chi(s)) unique up to rigid motions
```

Fundamental Theorem for plane curves

THEOREM

Prescribe $\kappa = \kappa(s)$ (continuous): $\theta(s) = \int \kappa(s) \, ds$, $\chi(s) = \int \cos \theta(s) \, ds$, $\chi(s) = \int \sin \theta(s) \, ds$ $\chi(s) = \int \sin \theta(s) \, ds$ $\chi(s) = \int \sin \theta(s) \, ds$

Example (Catenary)

$$\begin{split} \kappa(s) &= \frac{1}{1+s^2} \Rightarrow \theta(s) = \arctan s \\ x(s) &= \log \left(s + \sqrt{s^2 + 1} \right), \ y(s) = \sqrt{1+s^2} \leftrightarrow y = \cosh x, \ x \in \mathbb{R} \end{split}$$

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

Can a plane curve be determined if its curvature is given in terms of its position?

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{(x'(t)^2 + y'(t)^2)^{3/2}} = \kappa(x(t), y(t))$$

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

Can a plane curve be determined if its curvature is given in terms of its position?

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{(x'(t)^2 + y'(t)^2)^{3/2}} = \kappa(x(t), y(t))$$

$$\kappa(x,y) = \sqrt{x^2 + y^2} \Leftrightarrow \kappa(r) = r$$

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

Can a plane curve be determined if its curvature is given in terms of its position?

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{(x'(t)^2 + y'(t)^2)^{3/2}} = \kappa(x(t), y(t))$$

$$\kappa(x, y) = \sqrt{x^2 + y^2} \Leftrightarrow \kappa(r) = r$$

Bernoulli lemniscate: $r^2 = 3 \sin 2\theta$

Elastica under tension $\sigma \in \mathbb{R}$: Critical points of $\int (\kappa^2 + \sigma) ds$: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

Elastica under tension $\sigma \in \mathbb{R}$: Critical points of $\int (\kappa^2 + \sigma) ds$: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

$$\kappa(y) = 2\lambda y, \ \lambda > 0$$

$$\int \kappa(y) dy = \lambda y^2 + c$$
Tension $\sigma = -4\lambda c$

Maximum curvature $k_0=2\sqrt{\lambda}\sqrt{1-c}$, c<1

Elastica under *tension* $\sigma \in \mathbb{R}$:

Critical points of
$$\int (\kappa^2 + \sigma) ds$$
: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

$$\kappa(y) = 2\lambda y, \, \lambda > 0$$

$$\int \kappa(y) dy = \lambda y^2 + c$$
Tension $\sigma = -4\lambda c$

Maximum curvature $k_0=2\sqrt{\lambda}\sqrt{1-c},\ c<1$

• c > -1, wavelike:

$$\kappa(s) = k_0 \operatorname{cn}\left(\frac{k_0 s}{2p}, p\right),$$
 $p^2 = \frac{1-c}{2}, s \in \mathbb{R}$

Elastica under *tension* $\sigma \in \mathbb{R}$:

Critical points of
$$\int (\kappa^2 + \sigma) ds$$
: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

$$\kappa(y) = 2\lambda y, \, \lambda > 0$$

$$\int \kappa(y) dy = \lambda y^2 + c$$
Tension $\sigma = -4\lambda c$

Maximum curvature $k_0 = 2\sqrt{\lambda}\sqrt{1-c}$, c < 1

• c > -1, wavelike:

$$\kappa(s) = k_0 \operatorname{cn}\left(\frac{k_0 s}{2p}, p\right),$$

$$p^2 = \frac{1-c}{2}, s \in \mathbb{R}$$

• c = -1, borderline:

$$\kappa(s) = k_0 \operatorname{sech} \frac{k_0 s}{2},$$

$$s\in\mathbb{R}$$

Elastica under tension $\sigma \in \mathbb{R}$:

Critical points of
$$\int (\kappa^2 + \sigma) ds$$
: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

$$\kappa(y) = 2\lambda y, \, \lambda > 0$$

$$\int\!\kappa(y)dy=\lambda y^2+c$$
 Tension $\sigma=-4\lambda c$ Maximum curvature $k_0=2\sqrt{\lambda}\sqrt{1-c},\ c<1$

• c > -1, wavelike:

$$\kappa(s) = k_0 \operatorname{cn}\left(\frac{k_0 s}{2p}, p\right),$$

$$p^2 = \frac{1-c}{2}, s \in \mathbb{R}$$

• c = -1, borderline:

$$\kappa(s) = k_0 \operatorname{sech} \frac{k_0 s}{2}$$
,

 $s \in \mathbb{R}$

• c < -1, orbitlike:

$$\kappa(s) = k_0 \operatorname{dn}\left(\frac{k_0 s}{2}, p\right),$$
 $p^2 = \frac{2}{1-c}, s \in \mathbb{R}$

Index

- Motivation
- 2 Plane curves with curvature depending on distance to a line
- 3 Plane curves with curvature depending on distance from a point
 - New plane curves
 - Uniqueness results
- 4 Spherical curves with curvature depending on their position
 - New spherical curves
 - Uniqueness results

Index

- Motivation
- 2 Plane curves with curvature depending on distance to a line
- 3 Plane curves with curvature depending on distance from a point
 - New plane curves
 - Uniqueness results
- 4 Spherical curves with curvature depending on their position
 - New spherical curves
 - Uniqueness results

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

P.A. Djondjorov, M.T. Hadzhilazova, P.I. Marinov, I.M. Mladenov, V.M. Vassilev, . . .

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

P.A. Djondjorov, M.T. Hadzhilazova, P.I. Marinov, I.M. Mladenov, V.M. Vassilev, . . .

[I. C., I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

P.A. Djondjorov, M.T. Hadzhilazova, P.I. Marinov, I.M. Mladenov, V.M. Vassilev, . . .

[I. C., I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

Theorem $\kappa = \kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous.

The problem of determining a curve $\gamma(s)=r(s)\,e^{i\theta(s)}$ -s arc length-with curvature $\kappa(r)$ is solvable by three quadratures:

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

P.A. Djondjorov, M.T. Hadzhilazova, P.I. Marinov, I.M. Mladenov, V.M. Vassilev, . . .

[I. C., I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

Theorem $\kappa = \kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous.

The problem of determining a curve $\gamma(s)=r(s)\,e^{i\theta(s)}$ -s arc length-with curvature $\kappa(r)$ is solvable by three quadratures:

• $\int r\kappa(r)dr = \mathcal{K}(r)$, geometric angular momentum.

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

P.A. Djondjorov, M.T. Hadzhilazova, P.I. Marinov, I.M. Mladenov, V.M. Vassilev, . . .

[I. C., I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

Theorem $\kappa = \kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous.

The problem of determining a curve $\gamma(s)=r(s)\,e^{i\theta(s)}$ -s arc length-with curvature $\kappa(r)$ is solvable by three quadratures:

• $\int r\kappa(r)dr = \mathcal{K}(r)$, geometric angular momentum.

$$s = s(r) = \int \frac{rdr}{\sqrt{r^2 - \mathcal{K}(r)^2}} \longrightarrow r = r(s) \longrightarrow \kappa = \kappa(s).$$

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

P.A. Djondjorov, M.T. Hadzhilazova, P.I. Marinov, I.M. Mladenov, V.M. Vassilev, . . .

[I. C., I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

Theorem $\kappa = \kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous.

The problem of determining a curve $\gamma(s)=r(s)\,e^{i\theta(s)}$ -s arc length-with curvature $\kappa(r)$ is solvable by three quadratures:

• $\int r\kappa(r)dr = \mathcal{K}(r)$, geometric angular momentum.

$$s = s(r) = \int \frac{rdr}{\sqrt{r^2 - \mathcal{K}(r)^2}} \longrightarrow r = r(s) \longrightarrow \kappa = \kappa(s).$$

$$\theta(s) = \int \frac{\mathcal{K}(r(s))}{r(s)^2} ds.$$

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

P.A. Djondjorov, M.T. Hadzhilazova, P.I. Marinov, I.M. Mladenov, V.M. Vassilev, . . .

[I. C., I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

Theorem $\kappa = \kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous.

The problem of determining a curve $\gamma(s) = r(s) e^{i\theta(s)}$ -s arc lengthwith curvature $\kappa(r)$ is solvable by three quadratures:

• $\int r\kappa(r)dr = \mathcal{K}(r)$, geometric angular momentum.

$$\theta(s) = \int \frac{\mathcal{K}(r(s))}{r(s)^2} ds.$$

 $\triangleright \gamma$ is uniquely determined, up to rotations, by $\mathcal{K}(r)$.

Theorem $\kappa = \kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous.

The problem of determining a curve $\gamma(s)=r(s)\,e^{i\theta(s)}$ -s arc length-with curvature $\kappa(r)$ is solvable by three quadratures:

- $\int r\kappa(r)dr = \mathcal{K}(r)$, geometric angular momentum.
- $s = s(r) = \int \frac{rdr}{\sqrt{r^2 \mathcal{K}(r)^2}} \longrightarrow r = r(s) \longrightarrow \kappa = \kappa(s).$
- $\theta(s) = \int \frac{\mathcal{K}(r(s))}{r(s)^2} ds.$
- $\blacktriangleright \gamma$ is uniquely determined, up to rotations, by $\mathcal{K}(r)$.

Theorem $\kappa = \kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous.

The problem of determining a curve $\gamma(s)=r(s)\,e^{i\theta(s)}$ -s arc length-with curvature $\kappa(r)$ is solvable by three quadratures:

- $\int r\kappa(r)dr = \mathcal{K}(r)$, geometric angular momentum.
- $s = s(r) = \int \frac{rdr}{\sqrt{r^2 \mathcal{K}(r)^2}} \longrightarrow r = r(s) \longrightarrow \kappa = \kappa(s).$
- $\theta(s) = \int \frac{\mathcal{K}(r(s))}{r(s)^2} ds.$
- $\blacktriangleright \gamma$ is uniquely determined, up to rotations, by $\mathcal{K}(r)$.

Example (Circles)

$$\kappa \equiv k_0 > 0, \quad \mathcal{K}(r) = k_0 r^2 / 2 + c$$

$$s = \int \frac{r \, dr}{\sqrt{r^2 - (k_0 r^2 / 2 + c)^2}} \stackrel{(c=0)}{=} (2/k_0) \arcsin(k_0 r / 2)$$

$$r(s) = (2/k_0) \sin(k_0 s / 2), \quad \theta(s) = k_0 s / 2$$

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011] [Marinov, Hadzhilazova and Mladenov, 2014]

$$\kappa(r) = 1/r$$

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011] [Marinov, Hadzhilazova and Mladenov, 2014]

$$K(r) = r - 2\rho^2 \ (-c = 2\rho^2 > 0)$$

$$\kappa(r) = 1/r$$

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011] [Marinov, Hadzhilazova and Mladenov, 2014]

$$K(r) = r - 2\rho^2 \ (-c = 2\rho^2 > 0)$$

$$r(t)=
ho^2(t^2+1)$$
, $heta(t)=t-2$ arctan t $(ds=r\,dt)$

$$\kappa(r) = 1/r$$

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011] [Marinov, Hadzhilazova and Mladenov, 2014]

$$K(r) = r - 2\rho^2 \ (-c = 2\rho^2 > 0)$$

$$r(t) = \rho^2(t^2+1)$$
, $\theta(t) = t-2 \arctan t \ (ds = r \ dt)$

Sturm or Norwich spiral

Plane curves such that $\kappa(r) = \lambda r^{n-1} \ (\lambda > 0, n \neq -1, 0)$

$$\mathcal{K}(r) = \frac{\lambda}{n+1} r^{n+1}$$

Plane curves such that
$$\kappa(r) = \lambda \, r^{n-1} \, (\lambda > 0, n \neq -1, 0)$$

$$\mathcal{K}(r) = \frac{\lambda}{n+1} r^{n+1}$$

[Djondjorov, Vassilev and Mladenov, 2009] [Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2010]

$$\mathcal{K}(r) = \frac{\lambda}{n+1} r^{n+1}$$

[Djondjorov, Vassilev and Mladenov, 2009] [Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2010]

$$d\theta = \frac{\frac{\lambda}{n+1} r^{n-1}}{\sqrt{1 - \left(\frac{\lambda}{n+1}\right)^2 r^{2n}}} dr$$
 Sinusoidal spirals $r^n = \frac{n+1}{\lambda} \sin\left(n\theta\right)$

$$\mathcal{K}(r) = \frac{\lambda}{n+1} r^{n+1}$$

[Djondjorov, Vassilev and Mladenov, 2009] [Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2010]

$$d\theta = \frac{\frac{\lambda}{n+1} r^{n-1}}{\sqrt{1 - \left(\frac{\lambda}{n+1}\right)^2 r^{2n}}} dr$$

Sinusoidal spirals
$$r^n = \frac{n+1}{\lambda} \sin(n\theta)$$

• n = 2: Bernoulli lemniscate $r^2 = \frac{3}{\lambda} \sin 2\theta$

Plane curves such that
$$\kappa(r) = \lambda r^{n-1} \ (\lambda > 0, n \neq -1, 0)$$

$$\mathcal{K}(r) = \frac{\lambda}{n+1} r^{n+1}$$

[Djondjorov, Vassilev and Mladenov, 2009]

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2010]

$$d\theta = \frac{\frac{\lambda}{n+1} r^{n-1}}{\sqrt{1 - \left(\frac{\lambda}{n+1}\right)^2 r^{2n}}} dr$$

Sinusoidal spirals
$$r^n = \frac{n+1}{\lambda} \sin(n\theta)$$

• n = 2: Bernoulli lemniscate $r^2 = \frac{3}{\lambda} \sin 2\theta$

•
$$n = 1/2$$
: Cardioid $r = \frac{9}{4\lambda^2} \sin^2 \frac{\theta}{2}$

Plane curves such that
$$\kappa(r) = \lambda r^{n-1} \ (\lambda > 0, n \neq -1, 0)$$

$$\mathcal{K}(r) = \frac{\lambda}{n+1} r^{n+1}$$

[Djondjorov, Vassilev and Mladenov, 2009] [Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2010]

$$d\theta = \frac{\frac{\lambda}{n+1} r^{n-1}}{\sqrt{1 - \left(\frac{\lambda}{n+1}\right)^2 r^{2n}}} dr$$

Sinusoidal spirals
$$r^n = \frac{n+1}{\lambda} \sin(n\theta)$$

• n = 2: Bernoulli lemniscate $r^2 = \frac{3}{4} \sin 2\theta$

• n = 1/2: Cardioid $r = \frac{9}{4\lambda^2} \sin^2 \frac{\theta}{2}$

•
$$n \in \mathbb{Q}$$
:

Algebraic curves
$$n = 1/3, 1/4, 1/6$$

$$n = 2/3, 2/5, 2/7$$

 $n = 4/3, 5/4, 6/5$

Uniqueness results for plane curves

The Bernoulli lemniscate $r^2 = 3\sin 2\theta$ is the only plane curve (up to rotations) with geometric angular momentum $\mathcal{K}(r) = r^3/3$ (and curvature $\kappa(r) = r$).

The cardioid
$$r=\frac{1}{2}(1+\cos\theta)$$
 is the only plane curve (up to rotations) with geometric angular momentum $\mathcal{K}(r)=r\sqrt{r}$ (and curvature $\kappa(r)=\frac{3}{2\sqrt{r}}$).

The **Norwich spiral** is the only (non circular) plane curve (up to rotations) with curvature $\kappa(r) = 1/r$.

Plane curves such that $\kappa(r) = \frac{\lambda}{r^3} + 3\mu r \ (\lambda \in \mathbb{R}, \mu > 0)$

$$\mathcal{K}(r) = \mu r^3 - \lambda/r$$

Plane curves such that
$$\kappa(r) = \frac{\lambda}{r^3} + 3\mu r \ (\lambda \in \mathbb{R}, \mu > 0)$$

$$\mathcal{K}(r) = \mu r^3 - \lambda/r$$

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011]

$$\mathcal{K}(r) = \mu r^3 - \lambda/r$$

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011]

$$d\theta = \frac{\mu r^4 - \lambda}{r\sqrt{r^4 - (\mu r^4 - \lambda)^2}} dr$$

• $1 + 4\lambda \mu > 0$: $\exists a, b \neq 0 / \mu = \frac{1}{2b^2}, \lambda = \frac{a^4 - b^4}{2b^2}$

Plane curves such that
$$\kappa(r) = \frac{\lambda}{r^3} + 3\mu r \ (\lambda \in \mathbb{R}, \mu > 0)$$

$$\mathcal{K}(r) = \mu r^3 - \lambda/r$$

[Mladenov, Hadzhilazova, Djondjorov and Vassilev, 2011]

$$d\theta = \frac{\mu r^4 - \lambda}{r\sqrt{r^4 - (\mu r^4 - \lambda)^2}} dr$$

• $1 + 4\lambda \mu > 0$: $\exists a, b \neq 0 / \mu = \frac{1}{2b^2}, \lambda = \frac{a^4 - b^4}{2b^2}$

Cassini ovals $r^4 - 2a^2r^2\cos 2\theta + a^4 = b^4$

 $a \in \{1, 2, 3\}, b \in \{1, 2, 3, 4\}$

Plane curves such that $\kappa(r) = 2\lambda + \mu/r \ (\lambda = 1, \mu \neq 0)$

$$\mathcal{K}(r) = r^2 + \mu r$$
, $\mu < 1$

Plane curves such that
$$\kappa(r) = 2\lambda + \mu/r \ (\lambda = 1, \mu \neq 0)$$

$$K(r) = r^2 + \mu r, \ \mu < 1$$

$$r(s) = \cos s - \mu$$
, $\theta(s) = s + \mu \int \frac{ds}{\cos s - \mu}$ $\kappa(s) = \frac{2\cos s - \mu}{\cos s - \mu}$

Plane curves such that
$$\kappa(r)=2\lambda+\mu/r$$
 $(\lambda=1,\mu\neq0)$

$$K(r) = r^2 + \mu r, \ \mu < 1$$

$$r(s) = \cos s - \mu, \ \theta(s) = s + \mu \int \frac{ds}{\cos s - \mu} \qquad \kappa(s) = \frac{2\cos s - \mu}{\cos s - \mu}$$

$$\bullet \ \mu \in (-1, 1): \ \mu = \cos \gamma, \ 0 < \gamma < \pi$$

$$(s_{\gamma} \equiv \sin \gamma, \ c_{\gamma} \equiv \cos \gamma, \ t_{\gamma} \equiv \tan \gamma)$$

Plane curves such that
$$\kappa(r)=2\lambda+\mu/r$$
 $(\lambda=1,\mu\neq0)$

$$\mathcal{K}(r) = r^2 + \mu r$$
, $\mu < 1$

$$r(s) = \cos s - \mu$$
, $\theta(s) = s + \mu \int \frac{ds}{\cos s - \mu}$ $\kappa(s) = \frac{2\cos s - \mu}{\cos s - \mu}$

• $\mu \in (-1, 1)$: $\mu = \cos \gamma$, $0 < \gamma < \pi$ $(s_{\gamma} \equiv \sin \gamma, c_{\gamma} \equiv \cos \gamma, t_{\gamma} \equiv \tan \gamma)$

$$r_{\gamma}(s) = \cos s - c_{\gamma}, \ heta_{\gamma}(s) = s + rac{2}{t_{\gamma}} \operatorname{arctanh}\left(rac{s_{\gamma}}{1-c_{\gamma}} an rac{s}{2}
ight)$$

Plane curves such that
$$\kappa(r)=2\lambda+\mu/r$$
 $(\lambda=1,\mu\neq0)$

$$K(r) = r^2 + \mu r, \ \mu < 1$$

$$r(s) = \cos s - \mu$$
, $\theta(s) = s + \mu \int \frac{ds}{\cos s - \mu}$ $\kappa(s) = \frac{2\cos s - \mu}{\cos s - \mu}$

• $\mu = -1$:

Inverse Norwich spiral $r(s) = \cos s + 1$, $\theta(s) = s - \tan \frac{s}{2}$

Plane curves such that
$$\kappa(r)=2\lambda+\mu/r$$
 $(\lambda=1,\mu\neq0)$

$$\mathcal{K}(r) = r^2 + \mu r$$
, $\mu < 1$

$$r(s) = \cos s - \mu$$
, $\theta(s) = s + \mu \int \frac{ds}{\cos s - \mu}$ $\kappa(s) = \frac{2\cos s - \mu}{\cos s - \mu}$

• $\mu < -1$: $\mu = -\cosh \delta$, $\delta > 0$ $(s_{\delta} \equiv \sinh \delta, c_{\delta} \equiv \cosh \delta, t_{\delta} \equiv \tanh \delta)$

$$r_\delta(s)=\cos s+c_\delta$$
, $heta_\delta(s)=s-rac{2}{t_\delta}\arctan\left(rac{s_\delta}{1+c_\delta} anrac{s}{2}
ight)$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2+1} \ (0 < \lambda < 1)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 + 1}$$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2+1} \; (0 < \lambda < 1)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 + 1}$$

$$\lambda = \sin \beta$$
, $\beta \in (0, \pi/2)$ $(s_{\beta} \equiv \sin \beta, c_{\beta} \equiv \cos \beta, t_{\beta} \equiv \tan \beta)$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 + 1}$$

$$\lambda=\sin\beta$$
 , $\beta\in(0,\pi/2)$ ($s_{eta}\equiv\sin\beta,\ c_{eta}\equiv\cos\beta,\ t_{eta}\equiv\tan\beta$)

$$r_{\beta}(t)^{2} = \frac{\cosh^{2}(c_{\beta}t)}{c_{\beta}^{2}} - 1, \ \theta_{\beta}(t) = s_{\beta}t + \arctan\left(\frac{\tanh(c_{\beta}t)}{t_{\beta}}\right)$$
$$(ds = \sqrt{r_{\beta}^{2} + 1}dt, \ s = \sinh(c_{\beta}t)/c_{\beta}^{2})$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 + 1}$$

$$\lambda = \sin \beta$$
 , $\beta \in (0, \pi/2)$ $(s_{\beta} \equiv \sin \beta, c_{\beta} \equiv \cos \beta, t_{\beta} \equiv \tan \beta)$

$$r_{\beta}(t)^{2} = \frac{\cosh^{2}(c_{\beta}t)}{c_{\beta}^{2}} - 1, \ \theta_{\beta}(t) = s_{\beta}t + \arctan\left(\frac{\tanh(c_{\beta}t)}{t_{\beta}}\right)$$

$$\left(ds = \sqrt{r_{\beta}^{2} + 1}dt, \ s = \sinh(c_{\beta}t)/c_{\beta}^{2}\right)$$

$$\kappa_{\beta}(s) = \frac{\sin\beta\cos\beta}{\sqrt{1+\cos^{4}\beta\,s^{2}}}, \ \beta \in (0, \pi/2)$$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda>0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

• $0 < \lambda < 1 : \lambda = \sin \alpha$, $\alpha \in (0, \pi/2)$ $(s_{\alpha} \equiv \sin \alpha, c_{\alpha} \equiv \cos \alpha, t_{\alpha} \equiv \tan \alpha)$

$$\mathcal{K}(r) = \sin \alpha \sqrt{r^2 - 1}$$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda>0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

•
$$0 < \lambda < 1$$
: $\lambda = \sin \alpha$, $\alpha \in (0, \pi/2)$
 $(s_{\alpha} \equiv \sin \alpha, c_{\alpha} \equiv \cos \alpha, t_{\alpha} \equiv \tan \alpha)$

$$\mathcal{K}(r) = \sin \alpha \sqrt{r^2 - 1}$$

$$r_{lpha}(t)^2 = rac{\sinh^2(c_{lpha}t)}{c_{lpha}^2} + 1$$
, $\theta_{lpha}(t) = s_{lpha}t - \arctan(t_{lpha}\tanh(c_{lpha}t))$
 $(ds = \sqrt{r_{lpha}^2 - 1}dt$, $s = \cosh(c_{lpha}t)/c_{lpha}^2)$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda > 0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

• $0 < \lambda < 1 : \lambda = \sin \alpha$, $\alpha \in (0, \pi/2)$ $(s_{\alpha} \equiv \sin \alpha, c_{\alpha} \equiv \cos \alpha, t_{\alpha} \equiv \tan \alpha)$

$$\mathcal{K}(r) = \sin \alpha \sqrt{r^2 - 1}$$

$$r_{lpha}(t)^2 = rac{\sinh^2(c_{lpha}t)}{c_{lpha}^2} + 1, \; heta_{lpha}(t) = s_{lpha}t - \mathrm{arctan}(t_{lpha} anh(c_{lpha}t)) \ (ds = \sqrt{r_{lpha}^2 - 1}dt, \; s = \cosh(c_{lpha}t)/c_{lpha}^2) \ \kappa_{lpha}(s) = rac{\sinlpha\coslpha}{\sqrt{\cos^4lpha}\,s^2 - 1}$$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda>0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

•
$$\underline{\lambda = 1}$$
:
 $\mathcal{K}(r) = \sqrt{r^2 - 1}$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda>0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

•
$$\underline{\lambda} = \underline{1}$$
:
 $\mathcal{K}(r) = \sqrt{r^2 - 1}$

$$\frac{\textit{Anti-clothoid}}{\textit{r}(s) = \sqrt{1+2s}, \ \theta(s) = \sqrt{2s} - \arctan\sqrt{2s}}$$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda>0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

• $\underline{\lambda} = \underline{1}$: $\mathcal{K}(r) = \sqrt{r^2 - 1}$

Anti-clothoid $r(s) = \sqrt{1+2s}, \ \theta(s) = \sqrt{2s} - \arctan \sqrt{2s}$ $\kappa(s) = \frac{1}{\sqrt{2s}}, \ s > 0$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda>0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

ullet $\lambda > 1: \lambda = \cosh au$, au > 0 $(s_{\tau} \equiv \sinh \tau, c_{\tau} \equiv \cosh \tau, t_{\tau} \equiv \tanh \tau)$

$$\mathcal{K}(r) = \cosh \tau \sqrt{r^2 - 1}$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

• $\lambda > 1$: $\lambda = \cosh \tau$, $\tau > 0$ $(s_{\tau} \equiv \sinh \tau, c_{\tau} \equiv \cosh \tau, t_{\tau} \equiv \tanh \tau)$

$$\mathcal{K}(r) = \cosh \tau \sqrt{r^2 - 1}$$

$$\begin{split} r_{\tau}(t)^2 &= \frac{\sin^2(s_{\tau}t)}{s_{\tau}^2} + 1, \ \theta_{\tau}(t) = c_{\tau}t - \arctan\left(\frac{\tan(s_{\tau}t)}{t_{\tau}}\right) \\ &\left(ds = \sqrt{r_{\tau}^2 - 1}dt, \ s = -\cos(s_{\tau}t)/s_{\tau}^2\right) \end{split}$$

Plane curves such that
$$\kappa(r) = \lambda/\sqrt{r^2-1} \; (\lambda>0)$$

$$\mathcal{K}(r) = \lambda \sqrt{r^2 - 1}$$

• $\lambda > 1$: $\lambda = \cosh \tau$, $\tau > 0$ $(s_{\tau} \equiv \sinh \tau, c_{\tau} \equiv \cosh \tau, t_{\tau} \equiv \tanh \tau)$

$$\mathcal{K}(r) = \cosh \tau \sqrt{r^2 - 1}$$

$$\begin{split} r_{\tau}(t)^2 &= \frac{\sin^2(s_{\tau}t)}{s_{\tau}^2} + 1, \ \theta_{\tau}(t) = c_{\tau}t - \arctan\left(\frac{\tan(s_{\tau}t)}{t_{\tau}}\right) \\ \left(ds &= \sqrt{r_{\tau}^2 - 1}dt, \ s = -\cos(s_{\tau}t)/s_{\tau}^2\right) \\ \kappa_{\tau}(s) &= \frac{\sinh\tau\cosh\tau}{\sqrt{1-\sinh^4\tau s^2}} \end{split}$$

Index

- Motivation
- Plane curves with curvature depending on distance to a line
- Plane curves with curvature depending on distance from a point
 - New plane curves
 - Uniqueness results
- Spherical curves with curvature depending on their position
 - New spherical curves
 - Uniqueness results

Spherical version of Singer's Problem

Spherical version of Singer's Problem

Can a spherical curve be determined if its (geodesic) curvature is given in terms of its position?

$$\begin{vmatrix} x(s) & y(s) & z(s) \\ \dot{x}(s) & \dot{y}(s) & \dot{z}(s) \\ \ddot{x}(s) & \ddot{y}(s) & \ddot{z}(s) \end{vmatrix} = \kappa(x(s), y(s), z(s))$$
$$x(s)^{2} + y(s)^{2} + z(s)^{2} = 1, \ \dot{x}(s)^{2} + \dot{y}(s)^{2} + \dot{z}(s)^{2} = 1$$

Spherical version of Singer's Problem

Can a spherical curve be determined if its (geodesic) curvature is given in terms of its position?

$$\begin{vmatrix} x(s) & y(s) & z(s) \\ \dot{x}(s) & \dot{y}(s) & \dot{z}(s) \\ \ddot{x}(s) & \ddot{y}(s) & \ddot{z}(s) \end{vmatrix} = \kappa(x(s), y(s), z(s))$$
$$x(s)^{2} + y(s)^{2} + z(s)^{2} = 1, \ \dot{x}(s)^{2} + \dot{y}(s)^{2} + \dot{z}(s)^{2} = 1$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes. *Spherical curves whose curvature depends on distance to a great circle*. Preprint.]

$$\kappa(x, y, z) = \kappa(z), z = \sin \varphi, \varphi$$
 latitude

Theorem

```
Prescribe \kappa = \kappa(z) continuous.
The problem of determining a spherical curve \xi(s) = (x(s), y(s), z(s)) -s arc parameter- whose curvature is \kappa(z), (z representing the signed distance to the great circle z = 0), is solvable by 3 quadratures:
```

Theorem

Prescribe $\kappa = \kappa(z)$ continuous. The problem of determining a spherical curve $\xi(s) = (x(s), y(s), z(s))$ -s arc parameter- whose curvature is $\kappa(z)$, (z representing the signed distance to the great circle z = 0), is solvable by 3 quadratures:

Theorem

Prescribe $\kappa = \kappa(z)$ continuous. The problem of determining a spherical curve

 $\xi(s) = (x(s), y(s), z(s))$ -s arc parameter- whose curvature is $\kappa(z)$, (z representing the signed distance to the great circle z = 0), is solvable by 3 quadratures:

 \bullet $\int \kappa(z)dz = \mathcal{K}(z)$, spherical angular momentum

$$s = s(z) = \int \frac{dz}{\sqrt{1 - z^2 - \mathcal{K}(z)^2}} \longrightarrow z = z(s) \longrightarrow \kappa = \kappa(s)$$

Theorem

Prescribe $\kappa = \kappa(z)$ continuous. The problem of determining a spherical curve $\xi(s) = (x(s), y(s), z(s))$ -s arc parameter- whose curvature is $\kappa(z)$,

(z representing the signed distance to the great circle z=0), is solvable by 3 quadratures:

$$s = s(z) = \int \frac{dz}{\sqrt{1 - z^2 - \mathcal{K}(z)^2}} \longrightarrow z = z(s) \longrightarrow \kappa = \kappa(s)$$

Theorem

Prescribe $\kappa = \kappa(z)$ continuous. The problem of determining a spherical curve $\xi(s) = (x(s), y(s), z(s))$ -s arc parameter- whose curvature is $\kappa(z)$, (z representing the signed distance to the great circle z = 0), is solvable by 3 quadratures:

$$s = s(z) = \int \frac{dz}{\sqrt{1 - z^2 - \mathcal{K}(z)^2}} \longrightarrow z = z(s) \longrightarrow \kappa = \kappa(s)$$

lacktriangledown ξ is uniquely determined (up to rotations around the z-axis) by $\mathcal{K}(z)$

Examples

$$\kappa \equiv 0: \int \kappa(z) dz = c,$$

$$s = \int \frac{dz}{\sqrt{1 - c^2 - z^2}} = \arcsin \frac{z}{\sqrt{1 - c^2}}, |c| < 1,$$

$$z(s) = \sqrt{1 - c^2} \sin s,$$

$$\lambda(s) = -\arctan(c \tan s),$$

$$\xi(s) = (\cos s, -c \sin s, \sqrt{1 - c^2} \sin s),$$

$$S^2 \cap \{\sqrt{1 - c^2} y + c z = 0\}, \mathcal{K} \equiv c$$

Examples

Example (Great circles)

$$\kappa \equiv 0: \int \kappa(z) dz = c,$$

$$s = \int \frac{dz}{\sqrt{1 - c^2 - z^2}} = \arcsin \frac{z}{\sqrt{1 - c^2}}, |c| < 1,$$

$$z(s) = \sqrt{1 - c^2} \sin s,$$

$$\lambda(s) = -\arctan(c\tan s),$$

$$\xi(s) = (\cos s, -c \sin s, \sqrt{1 - c^2} \sin s),$$

$$\mathbb{S}^2 \cap \{\sqrt{1-c^2}\,y + c\,z = 0\}, \, \mathcal{K} \equiv c$$

Example (Small circles)

$$\kappa \equiv k_0 \ge 0: \quad \int \kappa(z) dz = k_0 z + c
z(s) =
\frac{1}{1+k_0^2} \left(\sqrt{1-c^2+k_0^2} \sin(\sqrt{1+k_0^2} s) - c k_0 \right),
|c| < \sqrt{1+k_0^2}.
c = 0: S^2 \cap \{y = \frac{k_0}{\sqrt{1+k_0^2}}\}, \quad \mathcal{K}(z) = k_0 z$$

<u>Elasticae</u> under tension $\sigma \in \mathbb{R}$: critical points of $\mathcal{F}_{\sigma}(\xi) := \int_{\xi} (\kappa^2 + \sigma) ds$ ($\sigma = 0$ free elasticae)

<u>Elasticae</u> under tension $\sigma \in \mathbb{R}$: critical points of $\mathcal{F}_{\sigma}(\xi) := \int_{\xi} (\kappa^2 + \sigma) ds$ ($\sigma = 0$ free elasticae)

 $\underline{\lambda\text{-elasticae}}\!:$ critical points of $\mathcal{F}^\lambda(\xi):=\int_\xi (\kappa+\lambda)^2 ds,\,\lambda\in\mathbb{R}$

<u>Elasticae</u> under tension $\sigma \in \mathbb{R}$: critical points of $\mathcal{F}_{\sigma}(\xi) := \int_{\xi} (\kappa^2 + \sigma) ds$ ($\sigma = 0$ free elasticae)

 $\underline{\lambda}$ -elasticae: critical points of $\mathcal{F}^{\lambda}(\xi) := \int_{\xi} (\kappa + \lambda)^2 ds$, $\lambda \in \mathbb{R}$

Theorem

(i)
$$\xi$$
 spherical curve, $\kappa(z) = 2az + b$, $a \neq 0$, $b \in \mathbb{R}$
 $(\int \kappa(z) dz = \mathcal{K}(z) = az^2 + bz + c)$

Elasticae under tension $\sigma \in \mathbb{R}$: critical points of $\mathcal{F}_{\sigma}(\xi) := \int_{\xi} (\kappa^2 + \sigma) ds$ ($\sigma = 0$ free elasticae)

 $\underline{\lambda\text{-elasticae}}$: critical points of $\mathcal{F}^{\lambda}(\xi):=\int_{\xi}(\kappa+\lambda)^2ds,\ \lambda\in\mathbb{R}$

Theorem

(i) ξ spherical curve, $\kappa(z) = 2az + b$, $a \neq 0$, $b \in \mathbb{R}$ $(\int \kappa(z) dz = \mathcal{K}(z) = az^2 + bz + c)$ $\Rightarrow \xi$ critical points of $\int_{\xi} (\kappa^2 - 2b\kappa + b^2 - 4ac) ds$

<u>Elasticae</u> under tension $\sigma \in \mathbb{R}$: critical points of $\mathcal{F}_{\sigma}(\xi) := \int_{\xi} (\kappa^2 + \sigma) ds$ ($\sigma = 0$ free elasticae)

 $\underline{\lambda}$ -elasticae: critical points of $\mathcal{F}^{\lambda}(\xi):=\int_{\xi}(\kappa+\lambda)^2ds,\ \lambda\in\mathbb{R}$

Theorem

(i)
$$\xi$$
 spherical curve, $\kappa(z) = 2az + b$, $a \neq 0$, $b \in \mathbb{R}$
 $(\int \kappa(z) dz = \mathcal{K}(z) = az^2 + bz + c)$
 $\Rightarrow \xi$ critical points of $\int_{\xi} (\kappa^2 - 2b\kappa + b^2 - 4ac) ds$
• $b = 0$ ($\mathcal{K}(z) = az^2 + c$): ξ elastica under tension $\sigma = -4ac$

<u>Elasticae</u> under tension $\sigma \in \mathbb{R}$: critical points of $\mathcal{F}_{\sigma}(\xi) := \int_{\xi} (\kappa^2 + \sigma) ds$ ($\sigma = 0$ free elasticae)

 $\underline{\lambda}$ -elasticae: critical points of $\mathcal{F}^{\lambda}(\xi):=\int_{\xi}(\kappa+\lambda)^2ds,\ \lambda\in\mathbb{R}$

Theorem

(i) ξ spherical curve, $\kappa(z) = 2az + b$, $a \neq 0$, $b \in \mathbb{R}$ $(\int \kappa(z) dz = \mathcal{K}(z) = az^2 + bz + c)$ $\Rightarrow \xi$ critical points of $\int_{\xi} (\kappa^2 - 2b\kappa + b^2 - 4ac) ds$ • b = 0 ($\mathcal{K}(z) = az^2 + c$): ξ elastica under tension $\sigma = -4ac$ • c = 0 ($\mathcal{K}(z) = az^2 + bz$): ξ λ -elastica, $\lambda = -b$

<u>Elasticae</u> under tension $\sigma \in \mathbb{R}$: critical points of $\mathcal{F}_{\sigma}(\xi) := \int_{\xi} (\kappa^2 + \sigma) ds$ ($\sigma = 0$ free elasticae)

 $\underline{\lambda\text{-elasticae}}$: critical points of $\mathcal{F}^{\lambda}(\xi):=\int_{\xi}(\kappa+\lambda)^2ds,\ \lambda\in\mathbb{R}$

Theorem

- (i) ξ spherical curve, $\kappa(z) = 2az + b$, $a \neq 0$, $b \in \mathbb{R}$ $(\int \kappa(z) dz = \mathcal{K}(z) = az^2 + bz + c)$ $\Rightarrow \xi$ critical points of $\int_{\xi} (\kappa^2 - 2b\kappa + b^2 - 4ac) ds$ • b = 0 ($\mathcal{K}(z) = az^2 + c$): ξ elastica under tension $\sigma = -4ac$ • c = 0 ($\mathcal{K}(z) = az^2 + bz$): ξ λ -elastica, $\lambda = -b$
- (ii) Conversely, ξ critical point of $\mathcal{F}_{\sigma}^{\lambda}(\xi) := \int_{\xi} ((\kappa + \lambda)^2 + \sigma) ds, \ \lambda, \sigma \in \mathbb{R}$ $\Rightarrow \exists a \neq 0, b \in \mathbb{R} : \kappa(z) = 2az + b$

•
$$a > 1/2$$
, $b = 0$, $c = 1$: $\kappa(z) = 2az$, $a > 0$, $\mathcal{K}(z) = az^2 + 1$

•
$$a > 1/2$$
, $b = 0$, $c = 1$: $\kappa(z) = 2az$, $a > 0$, $\kappa(z) = az^2 + 1$

$$\varphi(s) = \arcsin\left(\frac{\sqrt{2a-1}}{a}\operatorname{sech}(\sqrt{2a-1}s)\right), \ s \in \mathbb{R}$$

$$\kappa(s) = 2\sqrt{2a-1}\operatorname{sech}(\sqrt{2a-1}s)$$

$$\bullet \ a > 1/2, \ b = 0, \ c = 1 \colon \boxed{\kappa(z) = 2az}, \ a > 0, \ \mathcal{K}(z) = az^2 + 1$$

$$\varphi(s) = \arcsin\left(\frac{\sqrt{2a-1}}{a}\operatorname{sech}(\sqrt{2a-1}s)\right), \ s \in \mathbb{R}$$

$$\kappa(s) = 2\sqrt{2a-1}\operatorname{sech}(\sqrt{2a-1}s)$$

$$\lambda(s) = -a\int \tan^2\varphi(s)ds + \int \operatorname{sec}^2\varphi(s)ds$$

$$a = 1 \colon \lambda(s) = s;$$

$$a \neq 1 \colon \lambda(s) = s + \arctan\left(\frac{\sqrt{2a-1}}{1-a}\tanh(\sqrt{2a-1}s)\right)$$

$$\bullet \ a > 1/2, \ b = 0, \ c = 1 : \boxed{ \kappa(z) = 2az}, \ a > 0, \ \mathcal{K}(z) = az^2 + 1$$

$$\varphi(s) = \arcsin\left(\frac{\sqrt{2a-1}}{a}\operatorname{sech}(\sqrt{2a-1}s)\right), \ s \in \mathbb{R}$$

$$\kappa(s) = 2\sqrt{2a-1}\operatorname{sech}(\sqrt{2a-1}s)$$

$$\lambda(s) = -a\int \tan^2\varphi(s)ds + \int \sec^2\varphi(s)ds$$

$$a = 1 : \lambda(s) = s;$$

$$a \neq 1 : \lambda(s) = s + \arctan\left(\frac{\sqrt{2a-1}}{1-a}\tanh(\sqrt{2a-1}s)\right)$$

$$r = sn(s, k), \ \theta = k s, \ z = cn(s, k), \ (k > 0)$$
 [Erdös, 2000]

$$r = sn(s, k), \ \theta = k s, \ z = cn(s, k), \ (k > 0)$$
 [Erdös, 2000]

•
$$b = 0$$
, $a + c = 0$: $\kappa(z) = 2az$, $a > 0$, $\kappa(z) = az^2 - az^2$

$$r = \operatorname{sn}(s, k), \ \theta = k \, s, \ z = \operatorname{cn}(s, k), \ (k > 0) \text{ [Erdös, 2000]}$$

$$\bullet \ b = 0, \ a + c = 0: \boxed{\kappa(z) = 2az}, \ a > 0, \ \mathcal{K}(z) = az^2 - a$$

$$z(s) = \operatorname{cn}(s, a), \ a > 0$$

$$\kappa(s) = 2a \operatorname{cn}(s, a), \ a > 0$$

$$r = \operatorname{sn}(s, k), \ \theta = k \, s, \ z = \operatorname{cn}(s, k), \ (k > 0) \text{ [Erdös, 2000]}$$

$$\bullet \ b = 0, \ a + c = 0: \boxed{\kappa(z) = 2az}, \ a > 0, \ \mathcal{K}(z) = az^2 - a$$

$$z(s) = \operatorname{cn}(s, a), \ a > 0$$

$$\kappa(s) = 2a\operatorname{cn}(s, a), \ a > 0$$

$$\lambda(s) = as, \ r(s) = \operatorname{sn}(s, a), \ a > 0$$

$$r = \operatorname{sn}(s, k), \ \theta = k \, s, \ z = \operatorname{cn}(s, k), \ (k > 0) \text{ [Erdös, 2000]}$$

$$\bullet \ b = 0, \ a + c = 0: \boxed{\kappa(z) = 2az}, \ a > 0, \ \mathcal{K}(z) = az^2 - a$$

$$z(s) = \operatorname{cn}(s, a), \ a > 0$$

$$\kappa(s) = 2a\operatorname{cn}(s, a), \ a > 0$$

$$\lambda(s) = as, \ r(s) = \operatorname{sn}(s, a), \ a > 0$$

New spherical curves I:

$$\mathcal{K}(Z) = \frac{Z}{\sqrt{a-Z^2}}$$
, $0 < a = \sin^2 \alpha < 1 \ (0 < \alpha < \pi/2)$

$$\mathcal{K}(z) = -\sqrt{\sin^2 \alpha - z^2}$$

$$\varphi(s) = \arcsin(\cos \alpha s)$$

$$\kappa(s) = \frac{c_\alpha s}{\sqrt{s_\alpha^2 - c_\alpha^2 s^2}}, |s| < \tan \alpha$$

$$\lambda(s) = \frac{1}{c_\alpha} \arctan\left(\frac{c_\alpha s}{\sqrt{s_\alpha^2 - c_\alpha^2 s^2}}\right) - \frac{1}{2} \arctan\left(\frac{c_\alpha s + s_\alpha^2}{c_\alpha \sqrt{s_\alpha^2 - c_\alpha^2 s^2}}\right) - \frac{1}{2} \arctan\left(\frac{c_\alpha s - s_\alpha^2}{c_\alpha \sqrt{s_\alpha^2 - c_\alpha^2 s^2}}\right)$$

New spherical curves II:

$$K(z) = \frac{az}{\sqrt{1-az^2}}$$
, $a = \cosh^2 \delta > 1$, $(\delta > 0)$

$$\begin{split} \mathcal{K}(z) &= -\sqrt{1-\cosh^2\delta z^2} \\ \varphi(s) &= \arcsin(e^{\sinh\delta s}) \\ \kappa(s) &= \frac{\cosh^2\delta e^{\sinh\delta s}}{\sqrt{1-\cosh^2\delta e^{2\sinh\delta s}}}, \ s < -\log\cosh\delta / \sinh\delta \\ \lambda(s) &= \\ -\frac{1}{\sinh\delta} \operatorname{arctanh}\left(\sqrt{1-\cosh^2\delta e^{2\sinh\delta s}}\right) + \operatorname{arctan}\left(\frac{\sqrt{1-\cosh^2\delta e^{2\sinh\delta s}}}{\sinh\delta}\right) \end{split}$$

New spherical curves III:

$$\kappa(z) = \frac{p(1-2z^2)}{\sqrt{1-z^2}} = \frac{p\cos 2\varphi}{\cos \varphi} = \kappa(\varphi)$$
, 0

$$\begin{split} \mathcal{K}(z) &= p \, z \sqrt{1-z^2} = \tfrac{p}{2} \sin 2\varphi = \mathcal{K}(\varphi) \\ \varphi(s) &= \mathsf{am}(s,p) \\ \kappa(s) &= p(2 \operatorname{cn}(s,p) - 1/\operatorname{cn}(s,p)) \\ \lambda(s) &= -\tfrac{p}{2p'} \log \left(\frac{\operatorname{dn}(s,p) + p'}{\operatorname{dn}(s,p) - p'} \right), \, p' = \sqrt{1-p^2} \end{split}$$

Loxodromes

Loxodromes

The loxodromes, $d\lambda = \cot \alpha \frac{d\varphi}{\cos \varphi}$, $\alpha \in (0, \pi/2)$, are the only spherical curves (up to rotations around *z*-axis) with spherical angular momentum

$$\mathcal{K}(\varphi) = -\cos\alpha\cos\varphi$$

(and curvature
$$\kappa(\varphi) = \cos \alpha \tan \varphi$$
).

$$\kappa(s) = \cos\alpha \, \tan(\sin\alpha \, s), \, \alpha \in (0,\pi/2)$$

Loxodromes

The loxodromes, $d\lambda=\cot\alpha\frac{d\varphi}{\cos\varphi}$, $\alpha\in(0,\pi/2)$, are the only spherical curves (up to rotations around z-axis) with spherical angular momentum

$$\mathcal{K}(\varphi) = -\cos\alpha\cos\varphi$$

(and curvature
$$\kappa(\varphi) = \cos \alpha \tan \varphi$$
).

$$\kappa(s) = \cos \alpha \, \tan(\sin \alpha \, s), \, \alpha \in (0, \pi/2)$$

Spherical catenaries

Loxodromes

The loxodromes, $d\lambda=\cot\alpha\frac{d\varphi}{\cos\varphi}$, $\alpha\in(0,\pi/2)$, are the only spherical curves (up to rotations around z-axis) with spherical angular momentum

$$\mathcal{K}(\varphi) = -\cos\alpha\cos\varphi$$

(and curvature
$$\kappa(\varphi) = \cos \alpha \tan \varphi$$
).

$$\kappa(s) = \cos \alpha \tan(\sin \alpha s), \ \alpha \in (0, \pi/2)$$

Spherical catenaries

The spherical catenaries, $\sin \varphi \cos^2 \varphi \, \frac{d\lambda}{ds} = a$, a < 1/2, are the only spherical curves (up to rotations around z-axis) with spherical angular momentum

$$\mathcal{K}(\varphi) = -a/\sin\varphi$$

(and curvature $\kappa(z) = a/\sin^2 \varphi$).

$$\kappa(s) = \frac{2a}{1 + \sqrt{1 - 4a^2}\sin 2s}$$

Viviani's curve

Viviani's curve

Viviani's curve, $\lambda = \varphi$, is the only spherical curve (up to rotations around z-axis)

with spherical angular momentum
$$\mathcal{K}(z) = \frac{z^2-1}{\sqrt{2-z^2}}$$

(and curvature
$$\kappa(z)=rac{z(3-z^2)}{(2-z^2)^{3/2}}$$
).

Viviani's curve

Viviani's curve, $\lambda = \varphi$, is the only spherical curve (up to rotations around z-axis)

with spherical angular momentum $\mathcal{K}(z) = \frac{z^2-1}{\sqrt{2z^2}}$

(and curvature
$$\kappa(z)=rac{z(3-z^2)}{(2-z^2)^{3/2}}$$
).

Archimedean spherical spirals

Viviani's curve

Viviani's curve, $\lambda = \varphi$, is the only spherical curve (up to rotations around z-axis)

with spherical angular momentum $\mathcal{K}(z) = \frac{z^2-1}{\sqrt{2z^2}}$

(and curvature $\kappa(z) = \frac{z(3-z^2)}{(2-z^2)^{3/2}}$).

$$\kappa(z) = \frac{z(3-z^2)}{(2-z^2)^{3/2}}$$
).

Archimedean spherical spirals

Archimedean spherical spirals, $\varphi = n\lambda$, n > 0, are the only spherical curves (up to rotations around z-axis) with spherical angular momentum

$$\mathcal{K}(z) = \frac{z^2 - 1}{\sqrt{1 + n^2 - z^2}}$$

(and curvature
$$\kappa(z) = \frac{z(2n^2+1-z^2)}{(n^2+1-z^2)^{3/2}}$$
)

On a problem of David A. Singer about prescribing curvature for curves

Ildefonso Castro (Ildefonso Castro-Infantes and Jesús Castro-Infantes)

Partially supported by Geometric Analysis Project (MTM2017-89677-P)

